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ABSTRACT

B

3 : of difference algorithms designed to give approximate solutions of a model

The main result of this paper is a stability theorem for a certain class

inverse scattering problem in one dimension. This stability result guarantees

the convergence of the approximate solutions to the exact solution of the

problem as the grid of the difference scheme is refined. We-presend ghe _ |

es Anedson - |
results of numerical experimentsA sed on one of these schemes, in which second- |
order convergence is observed. Furthermore the cost (that is, the dependence

on N of the number of arithmetic operations required to compute the solution

at N grid points) of the algorithms discussed below is essentially optimal.
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SIGNIFICANCE AND EXPLANATION

Many problems of applied mathematics involve the inference of mechanical
\ properties of a medium, parts of which are not accessible to direct observation,
from measurements of scattering of small-amplitude waves. Such problems
arise in exploration geophysics, physical chemistry, and ultrasound tomography,
among other areas.

Many of these problems are equivalent in principle to boundary value
problems for certain partial differential equations. Any method of approximate
solution for such boundary value problems must have the attribute of numerical
stability, in order to be useful: that is, the round-off errors present in
all computation must not lead to uncontrolled growth in errors of the computed
quantities.

In this paper, a class of difference algorithms for a simple model

i inverse scattering problem is shown to be stable. This result implies that
these algorithms will actually compute approximate solutions to the inverse
scattering problem. In fact, explicit error bounds can, in principle, be

extracted from the results presented here.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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NUMERICAL STABILITY IN AN INVERSE

SCATTERING PROBLEM

W. W. Symes

§1. Introduction

The main result of this paper is a stability theorem for a certain class of dif-
ference algorithms designed to give approximate solutions of a model inverse scattering
problem in one dimension. This stability result guarantees the convergence of the
approximate solutions to the exact solution of the problem as the grid of the difference
scheme is refined. We present the results of numerical experiments based on one of
these schemes, in which second-order convergence is observed. Furthermore the cost
(that is, the dependence on N of the number of arithmetic operations required to
compute the solution at N grid points) of the algorithms discussed below is essen-
tially optimal.

The algorithms of this paper are difference approximations to a certain hyperbolic
boundary value problem. In a previous paper [1]), we showed that this hyperbolic
boundary value problem, the solution of which leads to a solution of the above-mentioned
inverse scattering problem, is equivalent to a certain Volterra integral equation, and
the latter was solved constructively, with estimates. Roughly the same plan is followed
in this paper. An approximate version of the Volterra equation is first solved, with
estimates. This discrete Volterra equation is then shown to be almost equivalent to a
certain difference approximation to the hyperbolic boundary value problem. The relation
is close enough that stability estimates for a class of difference approximations
follow.

It is interesting that the usual approaches to proving stability of difference
schemes for time-dependent problems (see for instance (2]) do not seem to apply to the

problem considered here.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This material
is based upon work supported by the National Science Foundation under Grant No.
MCS78-09525.
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3 §2. Statement and Discussion of Results
3 b We first discuss the continuum problem and its solution, with various estimates,

as presented in [1]. The continuum results provide the major tools for the approximate

solution, as well as the form of the estimates which must be reflected in the |
stability theorem for the various difference schemes. We then present some notational

conventions (concerning difference schemes and uniform estimates) to which we will

e AN P SR i

adhere throughout. Finally, we state the difference schemes which form the main
subject of the paper, and outline their stability properties.

The inverse scattering problem of this paper is: given a real-valued function

F: [0, 2T) * R, find a real-valued V : [0, T)] *R and H ¢ R so that

F(t) = U0, t), 0 < t < 2T, for the solution U of the initial boundary-value

problem

3 i 32 a2 N
4 : s e vl v(x)> U(x, t) =0 (2.1a)
g v At Ix

}

v ¢

: T + HU) (0, t) =0 t>0 (2.1b)

: i U(x, 0) = §(x), %% (x, 0) =0 (2.1¢)

in the region {(x, t) : 0< x< T, 0 <t < 21}, We shall refer to this problem as

the inverse problem.

This inverse problem can be considered a very simple instance of the inverse
scattering problem for a mechanical continuum supporting small-amplitude wave propaga-
tion. Roughly speaking, you are required to construct a vibrating one-dimensional
: continuum having equations of motion of the form (2.la), boundary condition of the
?: f form (2.1b), and having a prescribed response (back-scattered wave at x = 0)

F(t), t > 0, to an impulsive ("broad band") incident disturbance (initial conditions
(2.1c)), for a prescribed duration 2T > (0, The geometry of such a hyperbolic mixed

problem shows clearly that the boundary value F(t) = U(0, t) for 0 < t < 2T

depends on the coefficient V(x) only for 0 < x < T.
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This problem is typical in various respects of a large number of time-depandent
and time-independent inverse scattering problems.

Various other problems which may be treated by the techniques described below are
discussed briefly in the Conclusion (section 8). Furthermore, at least in the limit

T » =, this problem has a long and illustrious history, being a time-dependent

version of the inverse spectral problem for Sturm-Liouville operators solved by
1. M, Gel'fand and B. M. Levitan in their seminal paper (3). The connection between
the half-axis version of the inverse problem for (la,b,c) and the Gel'fand-Levitan
inverse spectral problem is explained in (1), section 3,
It was shown in [1] that solution of the inverse problem is equivalent to solu-
tion of a hyperbolic boundary value problem ((2.2) below), The Ruassian mathamatician
Chudov seems to have been the firat to suggest the possible use of this boundary
s value problem as a means for solving inverse problems (see [4), final section). We
shall therefore call this problem the Chudov problem. As we shall explain elsewhere,
the approach to inverse problems through the Chudov problem is closely related to the
recent work of Deift and Trubowitz (5] on the l-dimensional SchrBdinger inverse
scattering problem, and to the work of Hochstadt, Hald, and Levitan ((6), (7], [8)]) on
inverse Sturm-Liouville problems.
The Chudov problem is as follows. Let C_ = {(x, t) : 0 < x < min(t, 21 - t)}.

;4
Find W : CT + R such that

2

2
(3.? “ _a_i. + V(x)\ Wix, t) = 0 (2.2a)
at Ix /

W0, t) = F(t)
L 2.2
“—nm)(o,u-o >0 (2.2
H = F(0)

a

Vix) = -2 = wix, x) 0<xseT (2.2¢)

2
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Here, as in the inverse problem, the datum of the problem is the function
F ¢ (0, 2T) » R. Note that (2.2) is nonlinear, by virtue of the coupling of solution
and coefficient in (2,20).
In our previous work (1], estimates are given for various Sobolev norms of W,
V oin terms of similar norms of F, and a number « > O with the property that, for
any ¢ ¢ La [0, T},
T

¥ T g T
[ 1ol o) as ] ac o d0) (5 Fmee) v rda-e) 2e ] o
Q Q Q Q

\3 (2.0

A of functions with

The results of [1) are phrased in terms of the spaces e
n  absolutely integrable derivatives. Another somewhat unusual Sobolev Space,
denoted by U"l in (1], intervenes as an auxiliary device. Thias space is, roughly
speaking, the subspace of W''' (R) in which each function has a well-defined
rvestriction to each line in .2' tying in wl:l of functions on the line, and the
restrictions vary continuously with the choice of line. Precise definitions are found
in (1}, section 2,

The following result is proved in sectiomna 5, 6 of (1]

Theorem 1, Problem (2a,b,c) has a solution W in the apace 02'1

(CT) if and only
if F satisfies

2,1

(1) r« W' (10, 2T))

(11) there exists ¢ > O so that (2.3) is satisfied for all ¢ « L (0, 7).

e (10, T1) and is given by (2.2¢).

1f these are satisfied, then V ¢ W
It is convenient to paraphrase condition (ii) of the theorem as follows. Define

the symmetric Kernel
Gis, t) = -;— {(F(s + t) + ¥(la - t]))

If F satisfies (1), the kernel G is continuous, hence defines a bounded self-

adjoint Rilbert-Schmidt operator G on l.2 (10, T)). Denote by 1 the identity

e AN A DI e 7
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operator on Lz (10, T1). Then (ii) can be stated:

I+G2e>0 (1i*)

The method of solution of the Chudov problem (2.2) is based on the following

result:

2,1

Theorem 2. A function W ¢ W (CT) solves the Chudov problem (2) 1f and only if

s
G(s, t) = W(s, t) + [ dy W(y, s) W(y, t) for (s, t) ¢ Cq (2.4)
0

Remark 1) We shall refer to (2.4) as the G-L equation, or (GL). It appears first
in the paper of Gel'fand and Levitan [3], and also expresses the group law of
propagation of initial values for the mixed problem (la,b).
2) for (s, t) € CT} we have 0 < s < t. If we associate to the kernel W
(which is at least continuous) the Volterra operator
T

Waly) = [ dt Wiy, t) ¢(t)
Y

then you can write the GL equation in the form

I +G= (I+ W)*(I + W)
which clearly illustrates the necessity of hypothesis (ii') of Theorem 1.
The GL equation allows the derivation of a number of estimates for V in terms
of F in various norms other than the Sobolev (m, 1) =norms of the (sharp) stability

statement. For our purposes the following Co -estimates will be sufficient.

W < IR, (1 + et TRl (2.5a)

1D, Wi < HDRI exp (2 1M1 ) (2.5b)
IV < 2 oMl + W (Wl + 2T D, W) (2.5¢)

At this point, it should be mentioned that the estimate (2.5) is not really a

stability result, since the problem (2.2) is nonlinear. However it is very easy to
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prove genuine stability results (that is, local Lipschitz estimates for the map

Fv Vv, H) on the basis 9( boundedness results like (2.5). For both the continuum and
approximate problems, therefore, we will refrain from stability statements (which are
necessary, for instance, to derive explicit error bounds) and present only boundedness
results like (2.5).

This concludes our discussion of the (continuous) inverse problem. We now turn
to approximate methods of solution, and begin by establishing notation and terminology
for the difference schemes we shall use.

The approximate algorithms of this paper are difference schemes for computing
certain grid functions. The grids are uniform and rectangular, and the granularity
will be denoted by A. We will use the same letters for the discrete approxXimants as
for their continudous counterparts; thus, F(n) is meant to approximate F(nd),

W(n, m) corresponds to W(nd, md), etc. The number of (linear) gridpoints will be N.
We will have need of the sup norms

I = sup ]F(n))
1<n<N
or -
Wl =  sup |W(n, m]
1<n,m<N

Ity

and occasionally the A

norms

n 1/p
M=) alr|® lepew
§

The basic difference operators defined on grid functions are given by
. -1
D F(n) =4 "(F(n + 1) - F(n))

b F) = a L(rta) ~ Fln - 1))

The partial difference operators on 2-dimensional grid functions will be denoted by

subscripts, for instance:

D Win, m = 47 (W + 1, W - Win, m)
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and so on., We will also need the diagonal derivatives

D;AN(n, B) » &7 (0tn + 1, m ¢+ 1) - Rin, n))

o) W, ) = A~ twtn, B} - Mt = 2, n = 1))

OQur aim is to produce estimates for various difference schemes, based on such grids,
which are uniform in 4 as A » 0, that is, with T = NA fixed.

The first set of estimates pertain to solutions of an approximate GL equation.
We suppose that F : [0, 2T) » R is a Lipschitz function, and set

F(n) = F(nd)
G(n, m) = % {F(n + m) + F(|n - n|)}

If we approximate the integral in (GL) by right-endpoint Riemann sums, we obtain the

discrete Volterra equation

n
Gin, m) = Win, m) + } A W(k, n) Wk, m) (2.6)
k=1

for 1 < n < m. We can require (harmlessly)

n
Gn, m) = 2W(n, n) + ) A& Wk, m)°
n=1
(2.7
Win, m) = 0 , n>m

In section 4, we obtain the following results:
1) The system (2.6 - 2.7) can be written

1 - Ak ta
A I1+G A(A I+ W (A 1+ W

where I 1is the N x N identity matrix, and thus represents the Cholesky decomposition

of the matrix % I + G. A solution therefore exists if and only if the L.H.S. is

positive-definite, with lower bound € > 0.

2) Under suitable conditions, which we shall not discuss here, the solution W of

(2.6) - (2.7) converges in sup norm to the solution of (2.4).

-In
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3) The solution W of (2.6) - (2.7) is estimated by (Proposition 4.1)
-1 2
Ul < UHFl + ¢ ll’*l2 (2.8)

Further, provided 4 1is small enough in relation to lIFl, one can also bound the
partial differences of W by entire functions of |wl and norms of differences of
F, which are linear in F near F = 0 (Propositions 4.2, 4.3).

It is evident from (2.8) that uniform estimates as the grid is refined (a =+ 0)
will only be achieved if the lower bound ¢ = ¢(A) eventually stabilizes. Our
results therefore apply when the discrete approximations to the backscattered wave
have been chosen so as to guarantee such a uniform lower bound. We will not discuss
methods for extracting such discrete grid functions from experimental data in this
paper, although this very interesting matter should certainly be considered further.

Various elementary estimates and identities, used to prove the above-mentioned
estimates and for various other purposes, are collected in section 3 for easy
reference.

The identities and estimates of section 3 are used in section 5 to compute a
difference scheme satisfied by the solution W of (2.6) - (2.7). The result is

{equation (5.14)):

+

+ - -
(DJ D2 - D‘1 Dl)' 4+ VW = AR (2.9a)

= + -
vin) = - (Dn » 02 + Dl)"(n' n) (2.9b)

b’ W0, m) + HW(O, m) = AB(m, &)
(2.9¢)

W{0, m) = F{m)
Here R (2-dimensional) and B (l-dimensional) are grid functions whose sup norms
are bounded in terms of ¥, o ®, ip' 0 M, T, 3, and e.
This result is useless for computation purposes, since the R.H.S. of (2.9%a),
(2.9¢) depend explicitly on W in a complicated way. On the other hand, (2.9) is

clearly related to the following difference approximation to (2.2):

B
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+ - + -
= + .10
(l:)2 D2 D1 DI)WO V[) Ho =0 (2.10a)

- + -
Vo(n) - - (Dn + D2 + Dl)"o("’ n) (2.10b)

'O(O, m) = F(m)
(2.10c)

+
D uo(o, m) + H HO(O, m) = 0

The main result of this paper is the following estimate, proved in section 7;

relating the solutions of the systems (2.9) and (2.10):

hw - wil <8 ¢

(2.11)
iv-vilc<ac,
Here Cl' C2 are entire functions of IIFHl, HD: A, io* o~ M, T e‘l, and A. (In

fact, Cl. C2 are exponential polynomials; and can be written out explicitly,

although we do not do so here).

The estimates (2.8) and (2.11) combine to yield boundedness statements like
(2.5) for the solution of (2.10). An interesting difference is that the resulting
estimates on Hvoﬂ involve, in the limit A -+ 0, the modulus of Lipschitz continuity
of the derivative DF, whereas the sup norm estimate for V in the continuum problem
(2.5¢) only requires that DF be continuous.

The system (2.10) is still inefficient for computation; as it has local trunca-

tion error (on the boundaries) of first order. A second~order-consistent approxima-
tion to (2) is, for instance,

- + -
(D2 D2 e D1 D)W + VW = 0 (2.12a)

"1(0, m) = F(m)
(2.12b)

W, m (%vwn\z - HAW(O, m) + % (W0, m + 1) + W(0, m = 1))

+ -
V(n) = -~ (Dn + Dn)w(n, n) (2.12¢)
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A bonus of our method is that the stability of the lst-order-accurate system (2.10)
implies the stability o( the 2nd-order-accurate system (2.12). Indeed, the two differ
by terms which are 0(A), which may be shifted to the R.H.S. Our arguments are
exactly designed to extend the estimates for (2.10) to similar estimates for (2.12).
Well-known arguments then guarantee that the discrete coefficient V, constructed
by solving (2.12) on a machine, differs from the exact solution of (2.2), evaluated
at the corresponding grid points, by an error proportional to Az. The constant of
proportionality can even be estimated in terms of sup norms of differences of F, T,
c-l, and the round-off characteristics of particular machines, though we shall not
do this here.
Instead, we give the results of some numerical experiments based on the second-
order scheme (2.12). These are displayed in sgction 7. We end with a discussion, in

section 8, of related problems which may be solved by the same methods, as well as the

relation of our results to previous work on inverse scattering problems.

~10-
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§3, Elementary ldentities and Estimates

We begin with some estimates for discrete Volterra equations (obtained from

Volterra equations by replacing integrals with right-end=point Riemann sums). These
are entirely elementary, but we know of no reference which states exactly the esti-

mates we need, so we give complete proofs. We end with a number of useful identities

from the calculus of finite differences.

Lemma (3.1) Suppose that, for 1 < n < N

n-1
g(n) = ¢m) + ) A Win, K)e(k)
k=1
Then
Nol, < gl exp (NA IMI_)
n=1
Proof. Define M™(n) = a(n) = J A W(n, K)¥(n) for any grid function {y(n),
k=1

l<ng N}. Then we seek a fixed point of T, The point is, of course, that the

fixed point exists and is globally asymptotically stable. For instance, set

00 £0
‘p%l % ‘p
- » .P 2 .P'l
Then upﬂ - 'l‘o up, where
n=1
Ty VM) = - YA Wi v
u=l
Claim:
(nd lﬁl')p
Iup(n)l 5_-——-&-——-—-—Iql-p- i By 5 ns

The claim certainly holds for p = 1. Suppose that it holds up to p - 1. Then

n=1
- - A s
lag | = | kzl N e 0]

e

L S o il v o RN A
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e
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4
7
4

[}
;
i
i

e

nil I
<o liwl [u (k) f
k=1 P!
-1 i
n-1 (k& Il )P 3
< o lhwll e ] ;
k=1 (p 152 ;

n-1
= 3 P p-1
o @) kzl K70 gl

1 o -1
<=7 @I P [ a kT gl

- - '
(p - 1)! 0
P
(na liwll )
- ——-p,—-—- gl
as claimed.
© ®
It follows that Z u_ converges. Of course ): u_ = lim op =¢ is a fixed
p=0 P p=0 pre

point of T, which is clearly unique, and thé estimates on up add up to the
estimates of the Lemma. q.e.d.
Corollary 3.2. Suppose that for each n ; 1 <n <N, we have 1 + A W(n, n) > O,
and set p = sup |(1 + A W(n, n))l-l. Then the equation
1<n<N
n .
g(n) = ¢(n) + J & Win, k)¢ (k) (3.1)

k=1

has a unigue solution which satisfies
llell, < o ligll exp (pNA frwi )

Proof. The equation (3.1) can be rewritten

n-1
g(n) = (1 + 4 Win, n))é(n) + ) A Win, X)é(k)
k=1

Set y(n) = (1 + A W(n, n))¢(n), W(n, k) = (1 + 4 W(n, n))'lw(n, k).

Then ¢ satisfies

-12-
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n-1
g(n) = y(n) + )} A Win, Kk
k=1
hence according to the previous lemma,

Nl < gl exp (NA W)

which immediately implies the asserted estimate.

q.e.d. |
Lemma Suppose {U(n, m) : 1 < n <m< N} satisfies |
n-1 n-1 |
Gn, m) = U, m) + ) A W Ok, n)UGk, m) + LA vt mw, (k, m q
n=1 k=1 4
q
N
Then |
lul < ldl exp [NA max (Nwlﬂ. “Nzﬂ)l g
Proof. Exactly parallel to the proof of Lemma 1. ! |
q.e.d.
We conclude with a number of “"summation by parts" formulas which will be used in |
section 5. The proofs are all trivial, so we omit them.
: 1. o' p =p D
n-1 % Bl = {
2. Z A f(k))g(k) = ~ X A f(k)D g(k) + f(n)g(n - 1) - £(1)g(0) |
k=1 k=1 !
n-1 o n-1 & i
3. Z A(D f(n))g(k) = ~ I A f(k) (D g(k)) + f(n = 1)g(n) - £(0)g(1) ‘|
‘ k=1 k=1 i
1 - + - + |
4. D f(k) =D f(k=-1) , D f(k+ 1) =D f£(k) 4
n-1 ¥ n-1 o8 |
5. ) AM D £(k))g(k) = J A f(k) (D D g(k)) , |
k=1 k=1

+D f(n)g(n) - £(m)D g(n) =D £(1)g(l) + £(1D g(1)

=]l3- i
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n-1
6. Set F(n) = ) A f(k, n) |
k=1 l |
Then ‘
- n-1 = |
6..D!‘(n)-onzf(k,n)i»!(n-l.n-l) ;
k=1 1
+ et + il
6b. D F(n) = ) AD., f(k, n) + f(n, n + 1)
2 3

k=1 :

+ - n=1 ¥ - + :

6c. D D F(n) = J AD D, f(k, n) +D_ f(n, n) + D, £(n, n) %
L Ne n 2 s

qii
..

-14~- ’
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§4. Estimates for Cholesky Decompositions

A T ST, 5 S N A A S g { I AR AR

et {F(n), n =0, * * * , N} bean (N + 1) - vector, and define the symmetyic

i
| array G by
Gy m = 3 (P4 m o+ F(ln - w1
| 1 N
i Suppose that the matrix [ ry I+ QJn.m-I is positive-definite, where 1 1is the N X N
b
; identity matrix. Then % I + G admits a Cholesky decomposition
1 1 t 1
: (Alth)-A(AI#N)(AIi-w) (4.1)
% where W 1s a triangular array, W{(n, m) = 0 if n > m. In this section we obtain
estimates for W and its partial differences in terms of F and its differences, and L
the lower bound for % I+ G 3
i
The formula {4.1) can be rewritten & |
] |
Gln, m) = W(n, m + J AWk, n)W(k, m (@.2) |
k=1 |
for m > n. This suggests the introduction of the Hilbert subspaces e H = %
Vi, s e s, N defined by |
z
‘it’“m.*(n)-o » D> |
Let ﬂm : H - Hm be the orthogonal projections. Then (4.2) can be written A
1 *
: nm Gm - nm A (A + W )Hm "m (4.3)
; (here G (n) = G(n, m), W (n) = W(n, m))
% m m
; From (4.3) you obtain
: In_Gll = (w naGewn &awhn wo (4.9)
mom B T A m A m om *

3 2
where (, ) is the inner product associated with the norm | “2'

v We claim that the operator in the R.H.S. of (4.4) is invertible. In fact, it is

of the form K K+, where




1
K= nm(A + N)ﬂm

is an operator on Hm. Notice that the triangularity of W implies that

I wii_ =Wl
" ™ m

Thus

REb e s e R S " T T s

¢ + |
K K=24 nm (A + W )Ilm nm (K + H)nm

—

1 L NN §
=4 Hm (A + W )(K + H)ﬂm

SR e

%
=1 (K'* G)ﬂm

AR MR

Since % + G is bounded below on H by € > 0, it is a fortiori bounded below by

¢ when sandwiched between projections on Hm’ It follows that

P ST

ik v > e i

L 2
for all VY ¢ Hm. Then K must also be invertible, hence K K is invertible.

Since both R.r K and K K* are invertible on Hm’ they have the same spectrum,

which necessarily lies above ¢. Thus
W, a (l + W)l (l + w*)n W)
m m A mA m m
W, A GewnGewhin wo) (4.5)
m m m A ma m m *
]
¥ s nnmwmn

1f n<m, than "n = “m “n and

n
W oow D= ] AWk, nWK, ™)
n=1
(4.6)
=M W, T W)lell w, 0, w)
m n m m n n m m
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On the other hand

m e < um’ (4.7
m m 2 e 2

By conbining (4.4), {(4.5), (4.6), and (4.7) and using the Cauchy-Schwartz inequality

one obtains finally that for n < m

w, w)<etum? (4.8)
n . 2

and so from (4.2) that for n < m

Yami? (4.9)

[win, m| < Jatn, m| + 5

To estimate the diagonal elements W(n, n), write from (4.1)

n-1

Gln, n) = 2W(n, n) + & W(n, m)> + J & Wik, n)?
K=0
Thus
T js
n- }
win, n)-i%/l+lc(n. alf ~ § 4wk, 8l -2 |
k=0 a !

In order to maintain the positivity of the diagonal elements of % I +W, asis

required of the Cholesky decomposition, we must choose the + sign in front of the

radical. Since

//’ n-1 3 n-1 2
| 1+ (G, n) = ) Awk, - 1| < !G(n. n - ) A wk, mfa
k=¢ k=¢

Another application of (4.8) shows that (4.9) is valid also for n = m. So one has

proved

Proposition 4.1. The Cholesky factor W satisfies
e | 2 -1
Wl < HRL + ¢ " URID < WA (L + e N AR
— © 2= « o«
The next step is to estimate the partial differences of W. We start with

D; W(n, m) = % (Win, m+ 1) = Wn, m] , n<m

-17=
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D; G(n, m) -%.mn +m+1) +F(ln-m=-1]) -Fn+m - F(ln - m|))

=30 Fm+m + 0" F(ln - m))
+ " +
=D, Wn, m) + [ & Wk, n)p, Wik, m (4.10)

k=1

A similar expression holds for D; W

Proposition 4.2. Suppose p > 1 and

-1
S T S
i +e‘1m§

Then

o3 Wi < oD Ml exp (N8 W)

Proof. Apply Corollary 3.2 to (4.10).

q.e.d.
Proposition 4.3. Suppose p, A are as in Proposition 4.2. Then:

(@ 10f W< W 41Dt A x [+ pNa IW exp (N W)

®) [o, wen, m| < IWZ 4 10" H G+ pns W exp (NS W)
+ 4 + .

(c) "Du D) Wl < 2 llWimax (ID) Wi, ip; W, D W)

+IpY D7 Al (1 + oNA HWl exp (pNA W)}

Proof. According to formula (6) of section 3, for n < m

DI G(n, m) --;— ®" Fin+m -0 F(|n-m|))

n
=Dl W, W 4 WO AL, n s DWB L, M+ ] 8 D) Wk n)WK,
k=1

Hence

|o} win, m| < no* o +0W? + N W 1D) W

~18~
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which, together with Propositions 4.1 and 4.2, gives (a) . Similar computations

give the other estimates.
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§5. Ppartial Difference Equation for Cholesky Decomposition

As in the previous section, W will denote the lower triangular solution to

n
G(n, m) = W(m, n) + W(n, m) + )} A& W(k, n)W(k, n) (5.1)
k=1
where
G(n, m) = % {F(n + m) + F(|n - m|)) (5.2)

For n < m, the first summand on the R.H.S. of (5.1) can be dropped, thus:

n
G(n, m) = W(n, m) + ) A Wk, n)W(k, m) , n<m (5.3)
k=1

For the remainder of the paper, we use the symbol ¢ to abbreviate the usual

five-point approximation to the wave operator:

- +
0 = -
D 02 D1 D1

oo+

An easy calculation shows that
© G(n, m) =0

Therefore, applying ¢ to both sides of (5.3) and using formula 6 (from section 3)

gives
0= W(n, m + A0 (Wn, n)W(n, m)
n-1 & L n=1 * -
+ 1 8wk, n) (@D, Wik, m) - [ & (D, D) W(k, n))W(k, m) (5.4)
> B
k=1 k=1
- D;(W(n, n)W(n, m)) - (D; W(n, n))W(n, m)
Now

D;(H(n, nWin, m) = (n; W(n, n))W(n, m) + Wn = 1, n = 1) “’1 W(n, m)

So (5.4) can be rewritten as

-20-
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n-1 n-1
O W, m + ) awW(k, m@® D] Wk, m) - ] a) D Wk, n))w(k, m
2 2 2
k=1 k=1
(5.9)

- (O W, n) 'n; Wn, n)W(n, m = -A O(W(n, MW(n, M) + Wn = 1, n = HD, Win, W

Also formula 5 of section 3 implies

n-1 n-1

§ a0l Wik, n))W(k, m) = J 4 W(k, n) (D] D} W(k, m) + (D] W(n, n))W(n, m
L Rs e L B 1

(5.6)
- W(n, n)D; w(n, m) - (D; W(l, n)W(, m) + w(, n)D; W(l, m)
wWe shall examine the last two summands in the above more closely. For n =1 <m,

(5.1) reads
G(l, m) = ; (Fm + 1) + F(m = 1)) = (1 + 4 WQ, 1)W1, m
and for n=m =1
= R + F(O)) = W, 1) + A W(1, 1)2

It follows that

W(l, 1) = F(0) + OI(A) = H + OI(A)

where the bound x in the O, statement can be estimated in terms of uFﬂ_. oHl .

3
On the other hand,
2

% (Fim + 1) + F(m - 1)) = F(m) + %; o' 0™ F(m)

Combine these facts to obtain

W1, m) = (1 - HA)F(m) + 02(A)

where the bound in 02 can be estimated in terms of IRl _, DN, ot o HN_. It

follows (recalling that W(0, m) = F(m)) that

D wl(l. m = -H F(m) + 01(“

and finally that




(0" W(l, n))W(l, m) - w(l, n)DI W(l, m) = =H F(n) (1 - HA)F(m)
+ HF(m) (1 - HA)F(n) + Ol(A) -4 Rl(n, m, A)

where, for A sufficiently small, HRIM can be estimated in terms of IFl_,
-
IDFAl _, and io* o M.
Now rewrite (5.6) as
n-1 n-1

I 4] o] Wik, n)wik, m - § 8 Wk, n) (@] D] Wk, m)
k=1 k=1

- ‘DI W(n, n))W(n, m) = -W(n, n)D W(n, m) + 4 R (n, m, )

Add this identity to (5.5) to obtain
n=1 n-1
O W, m + § AWKk, n Wk, m - § a0 Wk, n)W(k, m
k=1 k=1

+ V(n)W(n, m) = A R(n, m, 4)

- + -
Vi(n) -(Dh + 02 . Dl)w(n, n)

R(n, m, 8) = -0[W(n, n)W(n, m)] - D_ Win, n)DI W, m) + R (0, m, &) (5.11)
According to the results of section 4, IRl may be estimated, for small A, in
terms of IRl _, el _, Iip" 0™ M _.
«©
Notice that we can replace the factor ¢ W(k, m) in the first sum on the L.H.S.
of (5.10) by © W(k, m) + V(k)W(k, m), provided we also replace ¢ W(k, n) in the
second sum by © W(k, n) + V(k)W(k, n).
Define
U(n, m) = ¢ W(n, m) + V(n)W(n, m) ,
Then U obeys the discrete Volterra equation
n=1 n-1
U(n, m) + J A W(k, )UK, m) = J A U(k, n)W(k, m =4 R(n, m, &) (5.12)
k=1 k=1

According to Lemma 3.3, the solution enjoys the same sort of bounds as the

I AN 5 £ PO 1 e s =
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inhomogeneous term. In particular, we get U = AP, so that
i O W(n, m) + V(n)W(n, m) = A P(n, m, 4) (5.13)
where IIPIl_ is bounded,'uniformly for small 4, in terms of IFl_, DM _, io* o~ Al _,
and |IWll _, hence (according to the results of section 4) in terms of e, IloFll _,
io* o Al_, and c-l.

For future reference, we collect (5.13), (5.11), and (5.8) in the form of a

boundary-value problem for W:

OW+VW=AP (5.14a)
Vin) = (0 + n; + D))W(n, n) (5.14b)

W(0, m) = F(m)
5 (5.14c)
Dl W(0, m) + HW(0, m) = A B(m, A)

where in the last line of (5.14c), the vector B(m, A), M > 0, defined implicitly in

the foregoing, is bounded uniformly for small A in terms of HFﬂQ, HDHIQ, and

i
i
%
3
i
4
§
3
:
o' o M. !
§
i
%
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§6. Estimates for Chudov Schemes

The purpose of the present section is to compare the solution W of the Cholesky
equation (5.1), (alternatively, of the boundary-value problem (5.14)), to the solution
W_ of the first order Chudov Scheme (equations (2.10) of section 2), which we display

0

here for convenience:

0 w0 + vo wo =0 (6.1a)

= + -
Vo(é) = -(Dn + D2 + Dl)wo(n, n) (6.1b)
WO(O, m) = F(m)

D" Wy (0, m) + HW (0, m) =0 (6.1c)
H = F(0)
The following notational convention is convenient: for any gridfunction

A(n, m) defined for n <m, set

+

D A(n, n) = -(n; +D,

+ Dl)A(n, n)

Then (6.1a), (6.1b) together become

o Wo(n, m) + Wo(n, m)D Wo(n, n) =0 (6.2)

Similarly (5.14a), (5.14b) become
O W(n, m) + W(n, m)D W(n, n) = A P(n, m, A) (6.3)

Subtracting (6.2) from (6.3) we obtain for the difference W=wW- wo

0 W(n, m) + V(n)W(n, n) + W(n, m)D W(n, n) - W(n, m)D W(n, n) =4 P(n, m, A) (6.4)
W also satisfies the boundary equations

WO, m) =0
ok % (6.5)
D1 W(0, m) + HW(0, m) = A B(m, A)

We shall show that both W and its first diffeérences are 0(A) as A + 0, in the

domain

C:.={(n,m7: 0<n<min (m, 2N - m)}

where N = T/A.
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The main tool is the next lemma, which shows that bounds of the type we want can
be propagated to fintte “depth" (nd © const,), with controlled growth {n the 3

constants of proportionality.

Lemma (06.1)  Suppose that W satisfies the diffevence egquat yon i

\\

Win, m) + V(nIRn, w) ¢ Wi, D R, n) - Wi, mD Win, n) o= A B, w, A) W 'l

A
in the half-lattice {(n, m) ¢+ n > 0}, Suppose in additicn that the following

estimates hola:

i it

IWto, m] . (W, m] < a -5
L P TN B S

for m ¢ ®, and
[Wwn, w | < Cy fvim | < Ca

Pin,y | <o,

for n >0, me¢ W Then for «x > 1 N satiafies

W, my | < ax €

[WEn, wm) = Wn = 1, m= D] < A%k ¢

provided nd = 1t satisfies 1t < 8§, where o = §(x, € ‘2. Cyr C‘. ‘\. A >0 e |

bounded away from sero, for fixed x > 1, Cl' N AT Al (‘5 independently of A » O,

Proof: You first establish the vepresentation

= =l n=1 _ . 1
Win, m= J W@, nem= 29« 1) <« F WO, nem= 2 ¢ ) AT ok, )
4=0 =l Cln,w)

(6.6)
n>1

where C(n, m) = {(k, §) ¢+ O <k <n, m=n&+k<j<md+n=k} and Q(0, m) =

Qfl, m) & 0,

L .......n.xu.‘n.ni.'ﬂd— ERERTENINE S



E The representation (6.6) clearly holds for n = 1. Assume that it holds for
E W(k, m), meZ and k < n. Write the difference equation in the form
3 Win, m) = W(n =1, m+1) +Wn-1,m=1) - Wn =2, m
E 3 2 - 2 .
E +4 V(n - W =1, m) + A" Wnh -1, mDWm -1, n~1)
b, 2
r -2 R, mBRm -2, n=1) -2 Ptn, W
' Note that (C(n =1, m+ 1) uC(hn -1, m=1)) \C(n~- 2, m) =C(n, m) \ {(n, m}.
Also,
i S n-1 _
] W, n4m=-23-1)- ] WO, n+m-=- 29
3=0 I=1
n=2 _ n=l
+ I W, nem-2-3) - ] WO, ne+m=-2§-2)
3=0 j=1
(6.7)
=3 n=3 _
- ) W, nAm-2-3)+ ) WO, n+m-2j-2)
j-o j‘l
n - Rl
= J WA, n+m=-2-1) = ] WO, n+mn-=- 2§
j=0 j=1
Obtain from (6.4), (6.7) and the induction hypothesis
E Win, m = J W, n+e4m=2§-1) - ] WO, n+m-= 2§)
i j=0 i=¢
i 3 2 -
i + ) A7 Q(k, §) + A% v(n - L)W - 1, w)
B cn,m\{(n,m}
4

s win-1,mB Wn-1, n-1) -2 Wn-1, mDWA-2,n-12) - 2} B(n, m

The representation formula therefore holds for (n, m) if you set

Qln, m = =B(n, W) + & L{v(n ~ L)itn - 1, m) +
(6.8)

Wn = 1, mD W(h = 1, n = 1) = W(n = 1, m)D W(n = 1, n = 1))

ik el e i s

v ik i



jo{x, m)|. The next step is to estimate 0(n) in terms

Denote by 6(n) = sup
k<n
meZ

of Q(n - 1), Cu' VR N R 1S

~ - ~ - + -
The main ingredient is the estimation of D W, Recall that D = Dn + D2 + Dl'

D, Wik, k) = ANk, k) - Rtk ~ 1, k - 1)) = aT2(R(L, 2 - 1)

k
WO, 2k -2+ § %@k -3, k+ ) +Qk =3 -1, k+ 3N

i=0
so |o] Wik, k)| < ac + 2 &% 9k (6.9a)
Similarly
[} + p)Wek, k)| <8¢ + 2k &% §k) (6.9b)

These estimates, when combined with (6.8) and the hypotheses, yield the required
estimate of Q(n).

The remainder of the proof is a finite induction argument.

Claims: Suppose
Lg e e g
T = nl f_min{(a(C3+A KCO)) » W = 1) bk -Q— +2-—-—6—--- -—6-
Then
(1) ]Qn, m)|_<_952lc5+2c1 ¢, +klc, € +248C)C))

(1) W, m| <8k c,

(iii) |W@, w - W =1, m - 1) 5A2 k¢

1

For n =1, (i) holds since Q(1, *) = 0 ; (ii) and (iii) are just the hypotheses of

the Lemma. Suppose (i), (ii), (iii) hold for n < n - 1. Then from (6.8), (6.9) you

obtain

- -1 2,- - - 2 =
loth, mjsc,+a7{c, 8 k€ +2Cy AC +4Cy 8 (R-1)Q+8 k Cy(2C) + 4 - DA™ Q)

St el G 2gc ¢ +4ana

5 o Sa 163 + 4 c3 AnQedx co(z Cc

1

|
|
|
|




I

TR

= C5 4+ 2 Cl C3 + K(C0 C

+2Acocl)+4nA(c3+A.<co)Q

4

The hypothesis of the claim is that T =nh < (8(C3 + Ak CO))-I among other things.

Together with the definition (i) of 6, this implies that the above is

Q +

Q=0

<

N
N =

which establishes (i).

The second part of the hypothesis on ;, namely

2 1/2
c - 1)C C
T 5_{1%;) & 2-———17——J%} T 1;
Q Q Q

means exactly that

0 < 12 g t T ¢y

On the other hand, the representation (6.6), estimated according to (i) and the

hypotheses of the Lemma, gives

n-1
[Wn, m| =]} (W@, n+m=-2j-1) -W0O, n+m=-2j-2)}

j=0
. 3 o g et Y 23
+ WO, m - n) + Z AQ(k.j)l<nAc+Ac+ Q=A(C . + T C_+7 2)
o g 0 2 0 1 2

C(n,m)
which is
<A« C0

if and only if (6.10) holds. Finally, using (6.6) as before, you show that

W@, m - w@E -1, m-D]<a’c, +2a’ng=a2ca+r2anRy
24y 1 A
2 =g 2
Ll Gl R = T == SL) =A" k C .
- 1 20, C1 1

The claim is thus proven, and with it the Lemma, if you take

= s l)Co (6.10)
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§ = §ix, Cot Cl' Cy Cyr Gy Ciy» A)
(6.11) :
”
: « = e, e engt e _
et § 1 YR R S v S e e (SRR o

3 0 N Q 8 \ %

For fixed x > 1 and CO - CS, § is uniformly bounded away from gero as A » 0, =0

satisfies the requirements of the Lemma,
Q.e.d.

Remark. The above specification of § allows one to determine an optimal choice of
X > 1, so as to make § as large as possible for given CO - CS.

Recall that N = A%,
Corollary 6.2. Same hypotheses as in lemma 6.1,

There exists o > 0 s0 that, for A sufficiently small

sup  |Win, my| <A . €, £ S
0<n<N
me %

and

sup |Wn, m = Wtn =2, m= 1] < 8% ° ¢,

0<n<N

me &
Proof. The hypotheses and conclusion of the lemma are so designed that it can be
applied iteratively to show estimates of the following form:

W, m| < axc, for 0 <nd <8 =8(CH €, Cpu Cyu Cpy Cgy )

- 2
[Wtn, m)| < 8 x” Cy for 8 < nh < § 48, §, = 8l Cpu x €y Cpy Cy0 Cpe Cqr %)

W )
[Win, m] €8x’ c, for § + ¢sj_1<‘na_<_sl~ 8y with

5y = st e, 372 €y Cyr Cyr Cyo Cyo )

Y w—‘w»-v-q i Rt



it S

o A Rk i AL v i3

Set

Qu=2C,+2¢C C + cilc +20C)

GO-GO(KICJCICICICICS)

152 3" 4

2
3 1 x - l)Cl Cl 2k - 1)Co
Z min 8C. + ¢ 5 iy » i) Wy A
T N %o Q

0

0

and define o = T/Go. Suppose that A is so small that A ? gl B

1 <j <0 certainly

3
8(C, + A k7 Cy) < B(Cy + Cp)

Also
.20k, kI c, kI C,,C.,C.,C,Cl=2C+2xk)cC, C+ &)
3 ¥ ot n s e el T 5 it}
3 J+1 =
5_2c5+2n €y Cy#x co(c4+zcl)irj(zc5+2c1c3+<c0(c4+2c1n IS
Hence, if
EF L e din b,
TSl T) ¢ 2 — e~
Q0 Q Q0
that is
Q
20
o 3 + T C1 (x l)C0
then
Q
o0 j g L5 3
D ES RIS Y Gy = k=) " Gy
<13?i+1x’c -x-1Jc¢
- 2 1 0
hence

§. T e
Ti(n c) +20< i) co] -Kocl
S 3
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Referring to the definition (6.11) of &, you see that, ﬁj > 60, ArmaN o e e g

So you can replace 6j by 60 in the estimates at the beginning of the proof to get

|ﬁ(n, w) | 50 «? C0

for (3 - 1)60 Znhi< 60. j=1, . . . , 0. For j =0, this gives the estimate

4 we want for W. The second estimate now follows in exactly the same way.
3 q.e.d.
E Theorem 6.3. Suppose W satisfies (6.4), (6.5). Then for (n, m) € Cﬁ, arbitrary

K > 1, and A sufficiently small,

; i, m| <8xcg

1B Win, m] < ax°® c,

- + il
C. are entire functions of ¢ l, A, v, Ifl, llp= Al, Ip b Fl and o > 0 t

where CO' 1 {

is the minimum envelope of entire functions of these arguments.

: : A
Proof. First observe that the difference scheme (6.4) restricts to CT' Also, all
of the constructions used in the proofs of Lemma 6.1 and Corollary 6.2 restrict i

t .
OCT

Now (6.5) can be written i
- 2
wl(l, m) = A° B(m, 4)

It follows that the hypotheses of Lemma 6.1 are satisfied, with C, estimated by the

1
estimated by the

B T

bound for B mentioned at the end of section 5, C_= A Cl' (e

0 5

bound for P given in section 5, and C3 and C4 estimated by the bounds for W,

V given in section 4. Note that

D W(n, n) = -(D; + D; + D;)W(n. n)

= --A-1 {W(n, n) = Wn -1, n-1) + Wn, n+ 1) - W(n, n)
4+ W(n, n) - Wn - 1, n)}

= -A_1 {Wn, n) =W(n -1, n-1) +Wn, n+1) - wWh -1, n)}




Mad ~ abar J ) gl

T 7R T T

and both of the differences in this expression are estimated by Corollary 6.2 which

leads to the second inequality in the statement. Note that the definition of 60

in the proof of Corollary 6.2 shows that © is as described.

q.e.d.
Corollary ©.4. For the solution wo, v0 of {6.1) and the solution W, V of (5.14),
we have: for any p > 0, there is Ao >0 so that for 0 < 3 < AO'

Wl < €1+ o)Wl

A

IIVOII a + p)ivi

We now turn to the second-order congistent scheme mentioned in section 2, which
we reproduce here:

CW +V W =0 (6.12a)

Hl(o, m) = F(m)

1 2 1 (6.12b)
WM m)o= (G (08T = W (0, m) + SW (0, m+ 1) + W (0, m=- 1))

+ -

V(n) = -(D + D )W (n, n)

1 B TR (6.12¢)
H = F(0)

As it stands, this scheme is incomplete: the value ‘5(0) is not determined

from the data. In order to preserve second-order consistency we add the following

one-sided difference approximation to Yéo), obtained from the GL equation and the

boundary condition (2.2c¢):
V(o) = 2 -2 - %r(z) - % F(0)) (6.12d)

Theorem 6.5. For any p > 0, there exists A1 >0 so that for 0 < A :_Al. the

solution W of (6.12a - d) satisfies
llwlll <@+ piw
vl < 1+ p)ivi a

-32-
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Proof. The idea is to compare w1 and wo in the same way wO and W were

compared above.
Write

+ -
D} wv(n. n) = -(Dn i Dn)wv(n' o D v=20,1

Then (6.1) can be rewritten

A

0 wo(n, m) + wo(n. m)D' wo(n, n) =4 Plin, m, 2)
(6.13a)

(n, m) « CT

WO(O. m) = F(m)

i 2 i 2
Woll, m) = (5 V(0)A" - HAYW (0, m) + (1 - 5 V(C)AT)W, (0, m) (6.13b)

Here
el ~
Pl(n, m, 4) = 4 (D wo(n, n) D wo(n, n))wo(n. m)

+ -
2 wo(n, n) - D, W_(n, n))wo(n, m)

"l +
= A (Dn wo(n, Q) =it 1 Yo

e
= A (Dl wo(n, s G R v wo(n, n))wo(n, m)

1
-1 + - - -
=47 (A D1 D1 Wo(n, n+ 1) + D1 wo(n, n+1) - D1 wo(n, n))wo(n, m)
- D, W.( +1) + D' D, W (n, n)W_( )
5 g T Tk Wil i e

Accordirg to Proposition 4.3(c), Pl can be estimated by an entire function of
c_l, T, A, and norms of F and its first and second differences.

For the difference W' = wo - wl we obtain

O W' (n, m + Vo(n)w' {n, m) * wo(n. m)D' W' (n, n)

- W' (n, mD' W'(n, n) = A Pl(n, m, 4) (6.14a)

“ A
(n, m) ¢ CT

SN ————

e
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w'(0, m) =0
2 (6.14b)
W' l, m) = 4 Bl(m, 4)

Here
P SIS AL
Bl(m, ) = 3 D D F(m) - 5 V{O)F (m)

[

From this point, the proof follows exactly the proofs of Lemma 6.1, Corollary 6.2,
Theorem 6.3, and Corollary 6.4, and we leave the dftails to the reader. We note in
passing that estimates appear for W' and D' w'/ analogous to those of Theorem 6.3

for W and D W. /

/ gq.e.d.

/

Remark. It seems likely that similar results c¢ould be obtained for higher-order

consistent schemes for the Chudov problem.
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Results of Numerical Experiments

We present the results of two series of numerical experiments carried out at the
University of Wisconsin - Madison MACC facility. The computations were performed in
single precision on the UNIVAC 1110.

Both series of experiments involved a FORTRAN program, detailed below, which
implements the second-order Chudov Scheme (6.12). In both cases V is to be
computed on [0, 1], i.e. T = 1. The series differ in the mode of data generation.

In the first series, the inverse problem for F(t) = F (const.) is solved by way
of (6.12). The approximate potential V(n) = V(nd) is compared with the exact
potential VE(n) = VE(nd), which is known in closed analytic form:

H = F(0)

(7.1)
VE(X) =

Both the maximum (sup norm) error

sup |Vin - 1) -vE(Mm - 1)
1<n<N

and the average (L1 -} error
1
g5 L lvn -1 -vem - 1|

are displayed.

The last three experiments in series 1 are meant to illustrate the dependence
of the error on the lower bound ¢, which for these examples is equal to
1l +H=1+F. As F = -1, the exact potential given by (7.1) clearly admits no
uniform Lipschitz bound in terms of norms of F alone (in fact, the analogous
expression for W shows that the bound (2.5a) is sharp). This lack of Lipschitz
uniformity is reflected in the behaviour of the computation, as predicted by the
theory. For H = =-,99, the computer produces garbage for N = 11. Even for

N = 101, the errors are relatively large, although almost all of the error is

=35-
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concentrated at the "deepest” end of the interval (near x =1 =~ an effect alsc
predicted by the theory).

The second series of experiments is based on numerically computed F for
various V, H. That is, VE and H are selected, the Chudov problem is solved
numerically for F {a version of the forward scattering proklem), then the progran
given below is executed with various samplings of this numerically-generated F as
input, and the resulting approximate V is compared with VE. Again, maximum and
average errors are displayed.

The main difficulty in this second series was the data (F -) generating
program, which was asked in effect to solve a discontinuous initial value problem for
a wave equation. We finally settled on a staggered-grid method which computes F at
2000 points on the t-axis, which are then sampled to produce the input for the
inverse program. Despite the relatively fine grid of the forward computation, erroyr
in F has an observable effect on the convergence of the inversion scheme in
several examples, in the (N = 51) to (N = 101) step.

Except as just noted, quadratic convergence is observed in all experiments.

It is difficult to assess the error figures given in the tables below, since the
problem solved here is merely a model problem, with no physical interpretation what-
soever attached. For the same reason, we have not bothered to predict the errors
based on the theory. Both of these items would be interesting for some of the

problems mentioned at the end of the next section.
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Program Implementing (6.12)

. head VEI) . Iml ,-N

PX) o Twd o AW

L
.

H = FQ1)

2 -3 1 3
3. V) =2 R - 248 (2 F(QR) ~ 3 2 - 3 F(1))

4. Toxr Iw= ) , MW=~
w(l, I) = F(I)
. S B N SR 2N - 2

ML!)-(%ANU-ku.n*%(NLI+1)*MLI-lH

6. T¥ I =3 , N
6.1 (T, I) = W(E = 1, T +1)+WIT~1,1T~-1)~WIT~-2 X}

VAT '3, T« DWE =%, DN s & W -1, M7

6.2 V(X =1) = od" (WX, I) - WZ -2, T=2)
6.3 or 3= 2T +1 ,, N=X=+1

6.3.1 WI, J) =W(I=-1,3+1) +WI=-1,3-1) -W1I-=-2,0J)

s v -nwI -1, D
7. MAX ERROR =  MAX vy - ve(D|
1<1, <N-1
g &
8. AVE ERROR = (N - 1)™° [ |v(1) - vE(D|
1=1

9. END
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V() = —1—-—2—-2 " RB(t) = H
(x+2)
H
DELTA MAX ERROR AVG, ERROR,
H= .1 il il i .0
AT il .0
A j .0 5 Ao
101 SR 2 Y .0
H=.5 AT 1 | 4 -3 .24, -3
21 .05 S -3 27 -4
5. .02 2 -4 .1 -4
101 .01 i -4 A -4
H=2, 11 .1 13 .93 -1
21 .05 .28 -1 .24 =y
51 .02 .45 -2 .41 -2
101 .01 a2 -2 .10 -2
H = 5. 11 Jal .40 +1 .24 +1
2 .05 .1 +1 .86
51 .02 a7 .16
101 .01 .44 -1 .41 -1
H=-.5 11 = .83 -2 .23 -2
21 .05 Jom g .65 -3
51 .02 .46 -3 .11 -3
101 .01 .10 -3 2 -4
H=-.9 11 1 11 +2 .14 +1
21 .05 .73 +1 .58
51 .02 .26 +1 .13
101 .01 .86 .38 -1
H=-.99 11 .1 .54 +3 .55 +2
21 .05 .11 +4 .57 +2
51 .02 .17 +4 .38 +2
101 .01 .16 +4 .20 +2
A = .01: errors <1 for O < x < .9; errors < .1 for 0 < x < .68. Also V(1) = 2'x 104.
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. TABLE I1
A V(X)) £ 0 H=2
N A MAX. ERROR AVG. ERROR
1 o Vi T
21 .08 0 ey a8 =1
51 .02 53 =2 A5 - =2
101 .01 a8 -2 s Al
B. YiX) B O H= -2
1 4 .9 -1 35
21 .05 T 4T i
51 .02 ET o 39 <3
101 .01 A8 s a8 =2
; G VIX) = 1 - x He0
3
: 1 & 3y RO AF 1w
21 .05 L e T T
51 .02 T .6 -4 T
101 .01 30 -4 o -4 ;
i
0. VIX) = X(1 - X) =0 :
1 % T S L E
21 .05 AL~y 95 -3
51 .02 3h ) 38 ey
101 .01 S A | 90 -4
3 E. V(X) = COS(2X) =0
11 1 6 =2 31 -3
21 .05 AY L 93 -3
51 .02 Ay B as -3
101 .01 .7 -4 .5 -4
F. V(X) = 5 COS(10X) H=0
1 1n % 1 7 .48
f 21 .05 21 .13
51 .02 VIS | L

101 .01 .85 -2 «33 -2
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88, Conclusion

We have still to discuss the relation of our results to work of other authors,
and the relative efficiency of our method for solving the inverse problem. Since
the first point bears on the second, we begin with it.

Our results belong to the line of work begun by Gel'fand and Levitan in [3]. We
have discussed the relation of previous work in this line to our results for the
continuum inverse problem in [1], and we defer further discussion of the various
approaches to the continuum problem to another place. We restrict our discussion
here to approximate methods.

All but one or two of the authors writing on inverse problems in the spirit of
Gel'fand and Levitan base their work on certan a linear integral equation. This is
either the Gel'fand-Levitan integral equation or the Marchenko integral eguation,
depending on whether the incident waves are incident at the origin or at intinity
(the latter is always the case for the whole-line inverse scattering problem). Also,
the inverse problems are usually formulated in the frequency domain: that is, the
scattering datum is either the spectral function (which is the Fourier transform of
our F(t): see (1], section 3), the (frequency-dependent) phase shift, or the
(frequency-dependent) scattering matrix or reflection coefficient.

Among the authors whose work on approximate solutions to inverse problems fits
into the framework just described are Case [9], Case and Kac [i0), Case and Chiu (111,
Ware and Aki (12], Berryman [13], and Green and Berryman [14].

P. Gopillaud ([15] has given a slightly different (and faster) algorithm for the
normal incidence elastic waves inverse problem for layered media. Ware and aki (12],
Greene and Berryman [13], and Berryman (14] develop this idea further and show that
the Gopillaud and discrete Gel'fand-Levitan-Marchenko approaches are equivalent, in

various senses,

«d0=
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Our work differs from all of the above mentioned work in many respects, the
following three of which we believe most important:

1) We base all of our results on the nonlinear Volterra equation (GL in section 2)
rather than the linear Gel'fand-Levitan or Marchenko equations. Though these are, in
principle, equivalent, it seems difficult to extract the proper stability results from

the linear equations.

2) Both the formulation of our inverse problem and its solution are time-

dependent. It is clear from the results of [1] that at least some of the “"frightful

instability" attributed by Wheeler [(16] to the Gel'fand-Levitan method enters by way

of the conditionally convergent Fourier integrals required to pass between the time-
domain and frequency-domain problems.

3) Most important for application and generalization is numerical stability.

R ASadi

Sl v o I o A el e

Some stability result is required to guarantee that each algorithm will actually
converge as A > 0 to the solution of the continuum problems. None of the above
authors seem to provide the necessary estimates to conclude convergence. To provide | -

such estimates is exactly the point of the present work.

RS

The Cholesky decomposition estimates of section 4 should also provide estimates

for the solution of the discrete versions of the linear Gel'fand-Levitan integral

. 1 L O o AN B

equation, hence imply convergence of the various algorithms so constructed. The same

PR LA RN

should ke true, with proper attention to the behaviour of the potential at infinity,

PR e

for the discrete Marchenko equation approaches.
We conjecture that the Gopillaud algorithm is actually closely related to our

Chudov scheme, hence should inherit the stability properties derived here.

$ s S S LA,

The approaches to the inverse problem based on the various integral equations

3 % 3
have costs proportional to N4 or N, depending on implementation (N = number of

linear gridpoints, as usual). The Gopillaud scheme (and modifications -~ (121, [132], i
and [14]) has cost proportionai to N2, The Chudov schemes investigated here also
have cost proportional to N2, hence seem to be optimally cheap amongst “"exact"

inversion methods.

ANt £ g
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In applications of inverse problems, for instance in exploration geophysics,
physical chemistry, and ultrasound tomography, various “approximate” inversion methods
are used. Indeed these problems involve more than one space dimension, and "exact"
Gel'fand-Levitan-Marchenko methods have yet to be extended in any useful way to higher-
dimensional problems. These approximate methods are based on well-known approximate
solution methods for the relevant partial differential equations, for instance Born
series approximation (formal perturbation series) or JWKB methods (geometric optics).
The approximate solutions are then inverted to obtain (one hopes) approximate solu-
tions to inverse scattering problems. One can also apply these methods, as detailed
for instance in [17], Chapter XV1, to the simple inverse problem of this paper. One
obtains schemes with cost proportional to N2 (or, for the Born approximation,

N log N if one employs the Fast Fourier Transform). Our Chudov algorithm therefore
has more or less the same cost as these "approximate" methods. Of course, the Chudov
algorithms also enjoy stability properties, as we have shown, which imply the
possibility of rigorous error estimation. No such possibility is available for the
"approximate" methods, to our knowledge.

We describe in conclusion some other problems to which our methods apply. The
analytical details (results analogous to Theorems 1 and 2, and estimates (2.5a, b, ¢))

have been worked out in [18] for an inverse problem for the acoustic wave operator

2 2
Gy g o
at Ix

and in [19) for some inverse problems for general hyperbolic systems in two variables
of first order, with constant sound speeds. Numerical results should also follow by
the techniques of this paper. 1In these problems, the incident waves are incident at
some finite point in the (one-dimensional) medium. Inverse scattering problems, in

which waves are incident at infinity, should also submit to roughly the same approach,

although the technical details remain to be worked out. We point out that inverse

e PR A e (T iy 3
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problems for the wave operator “C typically are approached through dependent- and
independent-variable transformations which convert it into the potential perturbation
of 5/0 treated in this paper ({12), [14)). Neither this possibility nor the
Gel'fand-Levitan-Marchenko linear integral equation approach are available for the
general hyperbolic first-order system with more than one variable (unknown) sound
speed. We have succeeded in solving some inverse problems for such systems by combin-
ing the techniques of [18) and [19].

Finally we mention that the artifacts of our approach to inverse problems
(GL eguation, Chudov boundary-value problem) are also available for higher-dimensional

inverse problems. We have not yet derived the necessary a Eriori estimates to proceed

with such an extension of the theory, however.
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